姓名 | 李花兵 | 性别 | 男 |
出生年月 | 1978.05 | 政治面貌 | 中共党员 |
职称 | 教授、博导 | 职务 | 副所长,辽宁省特种钢冶炼重点实验室副主任 |
办公电话 | 024-83689580 | ||
电子邮箱 | lihb@smm.neu.edu.cn;huabing_li@163.com | ||
学习经历: 2004.03 - 2008.03 云顶集团4118com钢铁冶金博士学位; 2002.09 - 2004.09 云顶集团4118com钢铁冶金硕士学位; 1998.08 - 2002.07 云顶集团4118com冶金科学与工程学士学位。 工作经历: 2018.07 - 至今,云顶集团4118com云顶集团4118com,冶金工程系,博士生导师; 2018.01 - 至今,云顶集团4118com云顶集团4118com,冶金工程系,长聘教授; 2017.01 - 至今,云顶集团4118com云顶集团4118com,冶金工程系,教授; 2012.07 - 2016.11,太原钢铁(集团)有限公司和云顶集团4118com,在职博士后; 2010.01 - 2016.12,云顶集团4118com材料与云顶集团4118com,钢铁冶金系,副教授; 2008.03 - 2009.12,云顶集团4118com材料与云顶集团4118com,钢铁冶金研究所,讲师; 2005.03 - 2008.02,云顶集团4118com材料与云顶集团4118com,钢铁冶金研究所,助教。 | |||
主要研究方向: (1)高品质特殊钢冶金理论及新工艺开发; (2)高氮不锈钢加压冶金理论、制备技术及新品种开发; (3)高性能不锈钢冶炼工艺及新品种开发。 | |||
近年讲授课程: 《特殊钢材料学及冶金原理》、《直读光谱分析》、《腐蚀电化学原理及测试技术》、《感应炉炼钢》等课程。 | |||
所在团队情况: 特殊钢冶金研究所(姜周华教授团队) | |||
人才培养情况: (1)培养和协助培养本科生32人(独立指导22人);培养和协助培养硕士研究生71人(独立指导48);培养和协助培养博士研究生27人(独立指导19人); (2)指导员工在首届中国金属学会“冶金青年创新创意大赛”等科技创新/创业大赛中获奖7 项(全国特等奖3项,二等奖2项,三等奖1项;省特等奖1项)。 | |||
科研项目情况: 长期致力于高品质特殊钢冶炼工艺及新品种开发方面的教学和科研工作,主持重点基金,重点研发计划(战略科技创新)、重点研发计划子课题、863子课题,国家自然基金面上等项目40余项,经费累计2000余万元。围绕高品质高氮不锈钢制备技术及品种开发,突破了常压下高纯净护环钢(氮含量0.65%以上)工业化稳定生产的技术瓶颈,实现了600MW以上大容量超超临界火电和核电机组用护环国产化,打破了德国和日本30多年技术封锁和市场垄断;首次研发了加压冶炼关键装备,攻克了加压冶金制备关键技术;阐明了氮在冶炼、凝固和材料中的行为,明晰了加压强化冷却和改善凝固组织机理,丰富和发展了加压冶金理论,研发了新一代航空高氮不锈轴承钢等系列高氮不锈钢新品种。围绕高性能不锈钢,突破了资源节约型、热核聚变实验堆用和超级等系列不锈钢制备关键科学和技术难题,实现批量稳定化生产,实物质量达到国际先进水平,满足了我国高端装备制造业材料急需。 代表性项目: (1)国家杰出青年科学基金,52325406,高氮不锈钢合金设计与制备,2024-01 至 2028-12, 主持; (2)辽宁省自由探索类基础研究(杰青), 2023JH6/100500008, 新型超级奥氏体不锈钢加压制备及加压焊接基础研究, 2023-01 至 2023-12, 主持; (3)重点研发计划(战略科技创新),2021YFE0204100,航空关键材料基因工程与人工智能设计,2021/08-2023/07,主持; (4)国家自然科学基金钢铁联合基金重点项目,U1960203,基于加压感应和加压电渣双联工艺制备高性能航空高氮不锈轴承钢的基础研究,2020/01-2023/12,主持; (5)国家自然科学基金面上项目,51774074,基于氮气压力动态调节的电渣重熔制备高氮高速钢梯度材料的基础研究,2018/1-2021/12,主持; (6)国家自然科学基金青年项目,51304041,气相渗氮和微弧增氮的加压电渣重熔技术制备含氮耐蚀塑料模具钢的基础研究,2014/01-2016/12,主持; (7)辽宁省“兴辽英才计划”项目,XLYC1902046,加压双联工艺制备高性能航空高氮不锈轴承钢的基础研究,2020/01-2022/12,主持; (8)十三五重大研发计划子课题,2016YFB0300203,620℃超超临界火电机组汽轮机用耐热不锈钢转子研制,2016/1-2019/12,主持; (9)863计划子课题,2015AA034301,典型极端环境下超级不锈钢服役行为及其制备技术,2015/04-2018/03,主持; (10)863计划子课题,2012AA03A502,开发600MW以上大容量超超临界火电机组汽轮机护环,2012/05-2015/12,主持; (11)国家自然科学基金重点项目,51434004,高品质特殊钢加压下熔炼和凝固的基础研究,2015/01-2019/12,骨干(第二,执行负责); (12)联合基金重点项目(军民共用重大研究计划),U1435205,高品质特殊钢加压下熔炼和凝固的基础研究,2015/01-2018/12,骨干(第二,执行负责); (13)国家自然科学基金联合资助重点项目,50534010,高氮不锈钢中氮的作用机理及对性能的影响,2006/01-2009/12,骨干(执行负责)。 | |||
论文著作情况: 至今,发表SCI论文200余篇,其中以一作和通讯发表150余篇(Nat. Commun.、Corros. Sci.、J. Mater. Sci. Technol.、Int. J. Plast.、Int. J. Heat Mass Tran.、Metall. Mater. Trans. B、ISIJ Int.、Steel Res. Int.、Mater. Sci. Eng., A、Metall. Mater. Trans. A、J. Alloys Compd.、Mater. Charact.等期刊);《高氮不锈钢》等著作5部;授权发明专利70余项(美国专利2项)。 代表性论著: (1)S.C. Zhang, H. Feng, H.B. Li*, et al. Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour, Nature Communications, 2023, 14: 7869. (2)Z.W. Ni, H.C. Zhu*, H.B. Li*, et al. Elucidating the promoting mechanism of nitrogen in the columnar-to-equiaxed transition of steel ingot, International Journal of Heat and Mass Transfer, 2024, 220: 125014. (3)J. Dai, H. Feng,H.B. Li*, et al. Insights into the mechanism of Mo protecting CoCrFeNi HEA from pitting corrosion—A quantitative modelling study on passivation and repassivation processes, Journal of Materials Science & Technology, 2024, 182: 152–164. (4)Y.M. Zhang, Y.X. Hu, H.B. Li*, et al. Martensitic transformation induced planar deformation of AlN nanoprecipitates in high nitrogen stainless steels, International Journal of Plasticity, 2023, 166: 103631. (5)H. Feng, H.B. Li*, J.D. Qu, et al. Unveiling the significant contribution of matrix elements to passivation behaviour and corrosion resistance of alloys by modelling approach, Corrosion Science, 2023, 214, 111014. (6)L.F. Xia, H.B. Li*, H. Feng, et al. Enhanced strength and toughness of high nitrogen stainless bearing steel by controlling interstitial partitioning via V-microalloying, Journal of Materials Science & Technology, 2023, 151: 204–218. (7)H.B. Li*, Y. Han, H. Feng, et al. Enhanced strength-ductility synergy via high dislocation density-induced strain hardening in nitrogen interstitial CrMnFeCoNi high-entropy alloy, Journal of Materials Science & Technology, 2023, 141: 184–192. (8)C.T. Yang, H. Feng, X.B. Chen, Y. Han, H.B. Li*, et al. Enhanced pitting corrosion resistance of CoCrFeMnNi high entropy alloy in the presence of Desulfovibrio vulgaris via nitrogen doping, Journal of Materials Science & Technology, 2023, 139: 92–102. (9)H. Feng, Y. Han, H.B. Li*, et al. Enhancement in impact toughness of CoCrFeMnNi high-entropy alloy via nitrogen addition, Journal of Alloys and Compounds, 2023, 932:167615. (10)Z.Y. He, H.B. Li*, H.C. Zhu, et al. Investigation on Porosity Formation With Pressure Drop Between Dendrite Tip and Root During Pressurized Solidification of 30Cr15Mo1N Ingot,Metallurgical and Materials Transactions B, 2023, 54(6): 3155–3163. (11)H.B. Li*, Z.W. Ni, H.C. Zhu, et al. Elimination mechanism of shrinkage porosity during pressurized solidification process of 19Cr14Mn4Mo1N high-nitrogen steel ingot, Metallurgical and Materials Transactions B, 2023, 54(3): 1422–1433. (12)X.Z. Li, H.B. Li*, H. Feng, et al. Nitrogen Solubility in Molten Ni, Ni-Cr, Ni-Mo and Ni-Cr-Mo Alloys under Pressurized Atmosphere, Metallurgical and Materials Transactions B, 2023, 54(1): 203–212. (13)Z.Y. He, H.B. Li*, H.C. Zhu, et al. Evolution of Precipitated Phase and Dendritic Structure Around Nitrogen Pore in 30Cr15Mo1N Ingot, Metallurgical and Materials Transactions B, 2023, 54(1): 213–220. (14)H.B. Li*, P.C. Lu, H. Feng, et al. Influence Mechanism of Crucible Materials on Cleanliness and Inclusion Characteristics of High-Nitrogen Stainless Bearing Steel During Vacuum Carbon Deoxidation, Metallurgical and Materials Transactions B, 2023, 54(3): 1099–1112. (15)S.X. Yang, H.B. Li*, H. Feng, et al. Effects of Atmosphere and Na2O in Slag on Inclusion Characteristics of Al-Killed Fe–18Cr–18Mn Remelted by (P)ESR Process,Metallurgical and Materials Transactions B, 2023, 54(4): 2229–2243. (16)H.B. Li*, W.C. Jiao, H. Feng, et al. Roles of N-Alloying and austenitizing temperature in tuning the hardness and strengthening–toughening behavior of M42 high-speed steel, Metallurgical and Materials Transactions A, 2023, 54(6): 2451–2469. (17)H. Feng, H.B. Li*, J. Dai, et al. Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying, Corrosion Science, 2022, 204: 110396. (18)J. Dai, H.B. Li*, H. Feng, et al. Revealing significant effect of nitrogen on prolonging pitting corrosion lifetime of martensitic stainless steel by modelling approach, Corrosion Science, 2022, 203: 110369. (19)H. Feng, J. Dai, H.B. Li*, et al. Sn microalloying enhances corrosion resistance of stainless steel by accelerating heterogeneous nucleation of passive film, Corrosion Science, 2022, 201: 110279. (20)X.J. Li, P. Zhou, H. Feng, Z.H. Jiang, H.B. Li*, et al. Spontaneous passivation of the CoCrFeMnNi high entropy alloy in sulfuric acid solution: The effects of alloyed nitrogen and dissolved oxygen, Corrosion Science, 2022, 196: 110016. (21)S.C. Zhang, H.B. Li*, Z.H. Jiang, et al. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654, Journal of Materials Science & Technology, 2022, 115:103-114. (22)J.T. Yu, S.C. Zhang, H.B. Li*, et al. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2022, 112:184–194. (23)S.C. Zhang, J.T. Yu, H.B. Li*, et al. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2022, 102: 105–114. (24)X.L. Liu, H. Feng, J. Wang, X.F. Chen, P. Jiang, F.P. Yuan, H.B. Li*, et al. Mechanism of dislocation evolution during plastic deformation of nitrogen-doped CoCrFeMnNi high-entropy alloy, Journal of Materials Science & Technology, 2022, 108: 256–269. (25)J.L. Tian, K. Chen, H.B. Li*, et al. Suppressing grain boundary embrittlement via Mo-driven interphase precipitation mechanism in martensitic stainless steel, Materials Science & Engineering A, 2022, 833: 142529. (26)S.C. Zhang, Y.F. Geng, H.B. Li*, et al. Design of a Novel Physical Simulator for Simulating Solidification Process of Continuous Casting Steel Slab, Metallurgical and Materials Transactions B, 2022, 53(6): 4006-4018. (27)H.B. Li*, Z.Y. He, H.C Zhu, et al. Influence Mechanism of Pressure on Nitrogen Bubble Formation During Solidification Process in 30Cr15Mo1N Ingot, Metallurgical and Materials Transactions B, 2022, 53(3): 1721-1732. (28)P.C. Lu, H.B. Li*, H. Feng et al. Improving Cleanliness and Controlling Inclusion Characteristics in High-Nitrogen Stainless Bearing Steels by Optimizing Addition Order and Contents of Mg and Ce, Metallurgical and Materials Transactions B, 2022, 53(3), 1920-1935. (29)H.C. Zhu, H.B. Li*, Z.W. Ni, et al. Effect of Solidification Pressure on Phase Transformation and Precipitated Phases of 30Cr15Mo1N Ingot, Metallurgical and Materials Transactions B, 2022, 53(1), 50-59. (30)H. Feng, P.C. Lu, H.B. Li*, et al. Effect of Mg Pretreatment and Ce Addition on Cleanliness and Inclusion Evolution in High-Nitrogen Stainless Bearing Steels, Metallurgical and Materials Transactions B, 2022, 53(2): 864-876. (31)W.C. Jiao, H.B. Li*, H. Feng, et al. Significant Improvement of Cleanliness and Macro micro-structure of As-cast AISI M42 High Speed Steel by Mg Treatment, Metallurgical and Materials Transactions B, 2022, 53(2): 1196-1211. (32)S.X. Yang, H.B. Li*, H. Feng, et al. Reaction Mechanism and Control Strategy of Aluminum Increase in High Nitrogen Stainless Bearing Steel during Pressurized Electroslag Remelting, Metallurgical and Materials Transactions B, 2022, 53(2): 1148-1161. (33)H. Feng, H.B. Li*, X.Z. Li, et al. Nitrogen Solubility and Gas Nitriding Kinetics in Fe–Cr–Mo–C Alloy Melts under Pressurized Atmosphere, ISIJ International, 2022, 62 (6): 1049–1060. (34)Y. Li, H. Yang, Z.H. Jiang, H.B. Li*, et al. Change of Spinel in High Ca Treament at 38CrMoAl Steel, ISIJ International, 2022, 62(11), 2276–2285. (35)S.C. Zhang, H.B. Li*, M.Z. Ran, et al. Effect of Al2O3 on Viscosity and Refining Ability of High Basicity Slag for Heat-resistant Austenitic Stainless Steel, ISIJ International, 2022, 62(11): 2207–2216. (36)P.C. Lu, H.B. Li*, H. Feng, et al. Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels, Metallurgical and Materials Transactions B, 52, 2210-2223 (2021). (37)H.C. Zhu, H.B. Li*, Z.Y. He, et al. Effect of Solidification Pressure on Gap Width between H13 Ingot and Mold, Metallurgical and Materials Transactions B, 52, 2210-2223(2021). (38)H. Feng, H.B. Li*, Z.Z. Liu, et al. Cleanliness Control of High Nitrogen Stainless Bearing Steel by Vacuum Carbon Deoxidation in a PVIM Furnace, Metallurgical and Materials Transactions B, 52, 3777-3787 (2021). (39)S.X. Yang, H.B. Li*, H. Feng, et al. Desulfurization Behavior 1 of Fe−18Cr−18Mn Alloy during the Pressurized Electroslag Remelting with Different Atmospheres and Na2O-containing Slags, Metallurgical and Materials Transactions B., 52, 1294-1308(2021). (40)S.X. Yang, H. Feng, H.B. Li*, et al. Nitrogen Solubility in Liquid Fe–Nb, Fe–Cr–Nb, Fe–Ni–Nb and Fe–Cr–Ni–Nb Alloys, ISIJ International, 61(2021): 5, 1498-1505. (41)H.C. Zhu, H.B. Li*, et al. Effect of Pressure on Dendrite Structure and Characteristics of Carbides during Solidification Process of H13 Die Steel Ingot, ISIJ International, 61(2021): 6, 1889-1898. (42)L.C. Zheng, H.B. Li*, et al. Effect of CaF2 on Viscosity and Refining Ability of Highly Basic Slags for Duplex Stainless Steel, ISIJ International, 61(2021): 6, 1784-1793. (43)K. Chen, H.B. Li*, Z.H. Jiang∗, et al. Multiphase microstructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel, Journal of Materials Science & Technology, 72 (2021) 81–92. (44)Y. Han, H.B. Li*, H. Feng, et al. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying, Journal of Materials Science & Technology, 65 (2021) 210–215. (45)J.L. Tian, W. Wang, H.B. Li*, et al. Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition, Materials Science & Engineering A, 805 (2021) 140589. (46)S.C. Zhang, H.B. Li*, Z.H. Jiang, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2020,42, 143-155. (47)S.C. Zhang, H.B. Li*, Z.H. Jiang, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment, Corrosion Science, 2020,163, 108295. (48)J. Dai, H. Feng, H.B. Li*, et al. Nitrogen significantly enhances corrosion resistance of 316L stainless steel in thiosulfate-chloride solution, Corrosion Science, 2020, 174, 108792. (49)W.C. Jiao, H.B. Li*, H. Feng, et al. Evolutions of Micro- and Macrostructure by Cerium Treatment in As-Cast AISI M42 High-Speed Steel, Metallurgical and Materials Transactions B, 51, 2240–2251(2020). (50)H.C. Zhu, H.B. Li*, Z.Y. He, et al. Effect of Pressure on Inclusion Number Distribution During the Solidification Process of H13 Die Steel, Metallurgical and Materials Transactions B, 51, 2976–2992(2020). (51)W.C. Jiao, H.B. Li*,H. Feng, et al. Effect of High Nitrogen Addition on Microstructure and Mechanical Properties of As-cast M42 High Speed Steel, ISIJ International, 60 (2020), 564–572. (52)C.Y. Chen, Z.H. Jiang, Y. Li, M. Sun, Q. Wang, K. Chen and H.B. Li*. State of the Art in the Control of Inclusions in Spring Steel for Automobile - a Review, ISIJ International, 60 (2020), 617–627. (53)J. Yu, F.B. Liu, Z.H. Jiang, H.B. Li*, et al. Effects of Nitrogen Gas Pressure on the Solidification Parameters and As-cast Microstructure Revolution during Pressurized Electroslag Remelting AISI 304 Stainless Steel, ISIJ International, 60 (2020),1684–1692. (54)H.C. Zhu, H.B. Li*, Z.H. Jiang, et al. Quantitative Correlation between Interfacial Heat Transfer Coefficient and Pressure for 19Cr-14Mn-0.9N High Nitrogen Steel Cylindrical Ingot, ISIJ International, 60 (2020), 1978–1984. (55)Y. Han, H.B. Li*, H. Feng, et al. Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition, Materials Science & Engineering A, 789 (2020) 139587. (56)K. Chen, Z.H. Jiang*, F.B. Liu, H.B. Li*, et al. Enhanced mechanical properties by retained austenite in medium–carbon Si-rich microalloyed steel treated by quenching–tempering, austempering and austempering–tempering processes, Materials Science & Engineering A, 790 (2020) 139742. (57)K. Chen, Z.H. Jiang, F.B. Liu, H.B. Li*, et al. Achievement of High Ductility and Ultra-high Strength of V-Nb Microalloyed Spring Steel by Austempered Multiphase Microstructure, Metallurgical and Materials Transactions A, 51, 3565–3575(2020). (58)H. Feng, H.B. Li*, Z.H. Jiang, et al. Designing for high corrosion-resistant high nitrogen martensitic stainless steel based on DFT calculation and pressurized metallurgy method. Corrosion Science, 2019, 158 (2019) 108081. (59)H. Feng, H.B. Li*, W.C. Jiao, et al. Significance of Partial Substitution of C by N on Strengthening and Toughening Mechanisms of High Nitrogen Fe-15Cr-1Mo-C-N Martensitic Stainless Steels. Metallurgical and Materials Transactions A, 2019, 50(11): 4987–4999. (60)W.C. Jiao, H.B. Li*, J. Dai, et al. Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels. Journal of Materials Science & Technology,2019, 35 (2019) 2357–2364. (61)J. Yu, F.B. Liu, H.B. Li*, et al. Numerical Simulation and Experimental Investigation of Nitrogen Transfer Mechanism from Gas to Liquid Steel During Pressurized Electroslag Remelting Process. Metallurgical and Materials Transactions B, 2019, 50, 3112~3124. (62)J. Yu, F.B. Liu, H.B. Li*, et al. Effects of mold current on slag skin and heat flow distribution during electroslag remelting at given power input. JOM, 71 (2019)744-753. (63)Z.H. Jiang, G. Xu, Yang Li, H.B. Li*, et al. Effect of Ultra-high Magnesium on SKS51 Liquid Steel Cleanliness and Microstructure. ISIJ International, 59 (2019) 1234-1241. (64)H. Feng, Z.H. Jiang, H.B. Li*, et al. Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy. Corrosion Science, 144 (2018) 288-300. (65)H. Feng, H.B. Li*, X.L. Wu, et al.Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. Journal of Materials Science & Technology, 2018, 34: 1781–1790. (66)Z.H. Jiang, H.C. Zhu, H.B. Li*, et al. A Novel Method for Improving Cast Structure of M42 High Speed Steel by Pressurized Metallurgy Technology, ISIJ International, 2018, 58 (7): 1267–1274. (67)Z.H. Jiang, H.C. Zhu, H.B. Li*, et al. Effect of solidification pressure on interfacial heat transfer and solidification structure of 19Cr14Mn0.9N high nitrogen steel, ISIJ International, 2018, 58 (1): 107–113. (68)Y. Li, C.Y. Chen, Z.H. Jiang, M. Sun, H. Hu and H.B. Li*. Application of Alkali Oxides in LF Refining Slag for Enhancing Inclusion Removal in C96V Saw Wire Steel, ISIJ International, 2018, 58 (7): 1232–1241. (69)C.Y. Chen, Z.H. Jiang, Y. Li, M. Sun, G.Q. Qin, C.L. Yao, Q. Wang and H.B. Li*. Effect of Rb2O on Inclusion Removal in C96V Saw Wire Steels Using Low-Basicity LF Refining Slag, ISIJ International, 2018, 58 (2018) 2032-2041. (70)H.C. Zhu, Z.H. Jiang, H.B. Li*. Effect of Solidification Pressure on Thermodynamic and Kinetic Parameters of 19Cr14Mn4Mo0.9N High Nitrogen Steel. Steel Research International, 2018, 89(5): 1700475. (71)H.C. Zhu, Z.H. Jiang*, H. B. Li*, et al. Effects of nitrogen segregation and solubility on the formation of nitrogen gas pores in 21.5Cr-1.5Ni duplex stainless steel, Metallurgical and Materials Transactions B, 2017, 48, 2493-2503. (72)H.B. Li*, S.X. Yang, S.C. Zhang*, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654, Materials and Design, 2017, 118:207-217. (73)H.B. Li, C.T. Yang, E.Z. Zhou, C.G. Yang*, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine pseudomonas aeruginosa biofilm, Journal of Materials Science & Technology, 2017, 1-8. (74)S.C. Zhang, Z.H. Jiang, H.B. Li*, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method, Journal of Alloys and Compounds, 2017, 695: 3083~3093. (75)H.C. Zhu, Z.H. Jiang, H.B. Li*, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, and G.H. Liu. Effect of solidification pressure on compactness degree of 19Cr14Mn0.9N high nitrogen steel using CAFE method, Steel Research International, 2017, 88(7):1~12. (76)H.B. Li, E.Z. Zhou, Y.B. Ren et al. Investigation of microbiologically influenced corrosion of highnitrogen nickel-free stainless steel by Pseudomonas aeruginosa, Corrosion Science, 2016, 111: 811–821. (77)H.B. Li*, B.B. Zhang, Z.H. Jiang, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air, Journal of Alloys and Compounds, 2016, 86: 326-338. | |||
荣誉称号等: (1)2023年国家杰出青年科学基金获得者; (2)2022年辽宁省“杰出青年科学基金”; (3)2019年辽宁省兴辽英才计划“科技创新领军人才”; (4)2020年辽宁省百千万人才工程-“百人层次”; (5)2020年第十二届“辽宁省优秀科技工作者”; (6)2019年第九届“中国金属学会冶金青年科技奖”; (7)2019年第四批青海省高端创新人才千人计划“拔尖人才”; (8)2020年第十四届“沈阳市优秀科技工作者”; (9)2020年“沈阳市领军人才”; (10)2023年云顶集团4118com“杰出贡献奖”; (11)2021和2022年度云顶集团4118com“卓越贡献奖”; (12)2021-2023年度 “云顶集团4118com优秀共产党员”; (13)2020年 “云顶集团4118com优秀教师”; (14)2020年云顶集团4118com第五届“我心目中的好导师”-“研精善教奖”; (15)2019年建龙特聘钢铁集团教授; (16)2019年荣程祥青科研创新奖二等; (17)2020年云顶集团4118com“优秀共产党员”; (18)2018和2019年云顶集团4118com“科研工作先进个人”; (19)2016年云顶集团4118com“青年岗位能手”; (20)2016年云顶集团4118com钢铁共性技术协同创新中心“创新标兵”; (21)2014年辽宁省和云顶集团4118com老员工创新创业大赛“优秀指导教师”; (22)2013-2014年度云顶集团4118com“优秀班导师”; (23)2014年云顶集团4118com“优秀博士后”。 | |||
科研奖励: (1)高性能系列超级不锈钢关键制备技术开发及应用,2021年辽宁省科技进步一等奖,个人总排名第1; (2)高品质特殊钢绿色高效电渣重熔关键技术的开发和应用,2019年度国家科技进步一等奖,个人总排名第7,校内个人排第3; (3)海洋环境下金属材料微生物腐蚀行为及机理, 2022年中国腐蚀与防护学会自然科学一等奖, 个人总排名第5,校内个人排第3; (4)高品质双相不锈钢系列板材关键制备技术开发及应用,中国钢铁工业协会2018年度冶金科技进步一等奖,个人总排名第3,校内个人排第1; (5)高性能超级奥氏体不锈钢系列板材关键工艺技术及产品开发,中国钢铁工业协会2015年度冶金科技进步二等奖,个人总排名第2,校内个人排第1; (6)高质量宽幅不锈钢光亮板全流程生产线自主集成与关键技术开发,2014年度山西省科技进步一等奖,个人总排名第7,校内个人排第1; (7)国际热核聚变实验堆用不锈钢关键材料及制造技术开发,2014年度山西省科技进步二等奖,个人总排名第8,校内个人排第1。 | |||
社会兼职: (1)Metallurgical and Materials Transactions B(Key Reader); (2)《钢铁研究学报》和《中国冶金》编委; (3)《中南大学学报(英文版)》首届青年编委; (4)《矿物冶金与材料学报(英文版)》第一届青年编委; (5)《材料工程》和《航空材料学报》青年编委; (6)辽宁科技大学兼职博士生导师; (7)中国金属学会不锈钢分会第一届委员会委员。 | |||
个人寄语:宁静致远 |